
QoS and Queuing v1.31 – Aaron Balchunas

* * *

All original material copyright © 2010 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

1

- QoS and Queuing -

Queuing Overview

A queue is used to store traffic until it can be processed or serialized. Both

switch and router interfaces have ingress (inbound) queues and egress

(outbound) queues.

An ingress queue stores packets until the switch or router CPU can forward

the data to the appropriate interface. An egress queue stores packets until the

switch or router can serialize the data onto the physical wire.

Switch ports and router interfaces contain both hardware and software

queues. Both will be explained in detail later in this guide.

Queue Congestion

Switch (and router) queues are susceptible to congestion. Congestion occurs

when the rate of ingress traffic is greater than can be successfully processed

and serialized on an egress interface. Common causes for congestion

include:

• The speed of an ingress interface is higher than the egress interface.

• The combined traffic of multiple ingress interfaces exceeds the

capacity of a single egress interface.

• The switch/router CPU is insufficient to handle the size of the

forwarding table.

By default, if an interface’s queue buffer fills to capacity, new packets will

be dropped. This condition is referred to as tail drop, and operates on a first-

come, first-served basis. If a standard queue fills to capacity, any new

packets are indiscriminately dropped, regardless of the packet’s

classification or marking.

QoS provides switches and routers with a mechanism to queue and service

higher priority traffic before lower priority traffic. This guide covers various

queuing methods in detail.

QoS also provides a mechanism to drop lower priority traffic before higher

priority traffic, during periods of congestion. This is known as Weighted

Random Early Detection (WRED), and is covered in detail in another guide.

QoS and Queuing v1.31 – Aaron Balchunas

* * *

All original material copyright © 2010 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

2

Types of Queues

Recall that interfaces have both ingress (inbound) queues and egress

(outbound) queues. Each interface has one or more hardware queues (also

known as transmit (TxQ) queues). Traffic is placed into egress hardware

queues to be serialized onto the wire.

There are two types of hardware queues. By default, traffic is placed in a

standard queue, where all traffic is regarded equally. However, interfaces

can also support strict priority queues, dedicated for higher-priority traffic.

DiffServ QoS can dictate that traffic with a higher DSCP or IP Precedence

value be placed in strict priority queues, to be serviced first. Traffic in a

strict priority queue is never dropped due to congestion.

A Catalyst switch interface may support multiple standard or strict priority

queues, depending on the switch model. Cisco notates strict priority queues

with a “p”, standard queues with a “q”, and WRED thresholds per queue

(explained in a separate guide) with a “t”.

If a switch interface supports one strict priority queue, two standard queues,

and two WRED thresholds, Cisco would notate this as:

1p2q2t

To view the supported number of hardware queues on a given Catalyst

switch interface:

Switch# show interface fa0/12 capabilities

The strict priority egress queue must be explicitly enabled on an interface:

Switch(config)# interface fa0/12

Switch(config-if)# priority-queue out

To view the size of the hardware queue of a router serial interface:

Router# show controller serial

The size of the interface hardware queue can modified on some Cisco

models, using the following command:

Router(config)# interface serial 0/0
Router(config-if)# tx-ring-limit 3

(Reference: http://www.cisco.com/en/US/tech/tk389/tk813/technologies_tech_note09186a00801558cb.shtml)

QoS and Queuing v1.31 – Aaron Balchunas

* * *

All original material copyright © 2010 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

3

Forms of Queuing

The default form of queuing on nearly all interfaces is First-In First-Out

(FIFO). This form of queuing requires no configuration, and simply

processes and forwards packets in the order that they arrive. If the queue

becomes saturated, new packets will be dropped (tail drop).

This form of queuing may be insufficient for real-time applications,

especially during times of congestion. FIFO will never discriminate or give

preference to higher-priority packets. Thus, applications such as VoIP can be

starved out during periods of congestion.

Hardware queues always process packets using the FIFO method of

queuing. In order to provide a preferred level of service for high-priority

traffic, some form of software queuing must be used. Software queuing

techniques can include:

• First-In First-Out (FIFO) (default)

• Priority Queuing (PQ)

• Custom Queuing (CQ)

• Weighted Fair Queuing (WFQ)

• Class-Based Weighted Fair Queuing (CBWFQ)

• Low-Latency Queuing (LLQ)

Each of the above software queuing techniques will be covered separately in

this guide.

Software queuing usually employs multiple queues, and each is assigned a

specific priority. Traffic can then be assigned to these queues, using access-

lists or based on classification. Traffic from a higher-priority queue is

serviced before the traffic from a lower-priority queue.

Please note: traffic within a single software queue (sometimes referred to as

sub-queuing) is always processed using FIFO.

Note also: if the hardware queue is not congested, software queues are

ignored. Remember, software-based queuing is only used when the

hardware queue is congested. Software queues serve as an intermediary,

deciding which traffic types should be placed in the hardware queue first and

how often, during periods of congestion.

QoS and Queuing v1.31 – Aaron Balchunas

* * *

All original material copyright © 2010 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

4

Priority Queuing (PQ)

Priority Queuing (PQ) employs four separate queues:

• High

• Medium

• Normal (default)

• Low

Traffic must be assigned to these queues, usually using access-lists. Packets

from the High queue are always processed before packets from the Medium

queue. Likewise, packets from the Medium queue are always processed

before packets in the Normal queue, etc. Remember that traffic within a

queue is processed using FIFO.

As long as there are packets in the High queue, no packets from any other

queues are processed. Once the High queue is empty, then packets in the

Medium queue are processed… but only if no new packets arrive in the High

queue. This is referred to as a strict form of queuing.

The obvious advantage of PQ is that higher-priority traffic is always

processed first. The nasty disadvantage to PQ is that the lower-priority

queues can often receive no service at all. A constant stream of High-

priority traffic can starve out the lower-priority queues.

To configure PQ, traffic can first be identified using access-lists:

Router(config)# access-list 2 permit 150.1.1.0 0.0.0.255

Router(config)# access-list 100 permit tcp any 10.1.1.0 0.0.0.255 eq www

Then, the traffic should be placed in the appropriate queues:

Router(config)# priority-list 1 protocol ip high list 2

Router(config)# priority-list 1 protocol ip medium list 100

Router(config)# priority-list 1 protocol ip normal

Router(config)# priority-list 1 protocol ipx low

Router(config)# priority-list 1 default normal

The size of each queue (measured in packets) can be specified:

Router(config)# priority-list 1 queue-limit 30 40 50 60

Finally, the priority-list must be applied to an interface:

Router(config)# interface serial0

Router(config-if)# priority-group 1

QoS and Queuing v1.31 – Aaron Balchunas

* * *

All original material copyright © 2010 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

5

Custom Queuing (CQ)

A less strict form of queuing is Custom Queuing (CQ), which employs a

weighed round-robin queuing methodology.

Each queue is processed in order, but each queue can have a different weight

or size (measured either in bytes, or the number of packets). Each queue

processes its entire contents during its turn. CQ supports a maximum of 16

queues.

To configure CQ, traffic must first be identified by protocol or with an

access-list, and then placed in a custom queue:

Router(config)# access-list 101 permit tcp 172.16.0.0 0.0.255.255 any eq 1982

Router(config)# queue-list 1 protocol ip 1 list 101

Router(config)# queue-list 1 protocol ip 1 tcp smtp

Router(config)# queue-list 1 protocol ip 2 tcp domain

Router(config)# queue-list 1 protocol ip 2 udp domain

Router(config)# queue-list 1 protocol ip 3 tcp www

Router(config)# queue-list 1 protocol cdp 4

Router(config)# queue-list 1 protocol ip 5 lt 1000

Router(config)# queue-list 1 protocol ip 5 gt 800

Each custom queue is identified with a number (1, 2, 3 etc.). Once traffic has

been assigned to custom queues, then each queue’s parameters must be

specified. Parameters can include:

• A limit – size of the queue, measured in number of packets.

• A byte-count – size of the queue, measured in number of bytes.

Configuration of queue parameters is straight-forward:

Router(config)# queue-list 1 queue 1 limit 15

Router(config)# queue-list 1 queue 2 byte-count 2000

Router(config)# queue-list 1 queue 3 limit 25

Router(config)# queue-list 1 queue 4 byte-count 1024

Router(config)# queue-list 1 queue 4 limit 10

Finally, the custom queue must be applied to an interface:

Router(config)# interface serial0/0

Router(config-if)# custom-queue-list 1

(Reference: http://www.cisco.com/en/US/docs/ios/12_0/qos/configuration/guide/qccq.html)

QoS and Queuing v1.31 – Aaron Balchunas

* * *

All original material copyright © 2010 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

6

Weighted Fair Queuing (WFQ)

Weighted Fair Queuing (WFQ) dynamically creates queues based on

traffic flows. Traffic flows are identified with a hash value generated from

the following header fields:

• Source and Destination IP address

• Source and Destination TCP (or UDP) port

• IP Protocol number

• Type of Service value (IP Precedence or DSCP)

Traffics of the same flow are placed in the same flow queue. By default, a

maximum of 256 queues can exist, though this can be increased to 4096.

If the priority (based on the ToS field) of all packets are the same, bandwidth

is divided equally among all queues. This results in low-traffic flows

incurring a minimal amount of delay, while high-traffic flows may

experience latency.

Packets with a higher priority are scheduled before lower-priority packets

arriving at the same time. This is accomplished by assigning a sequence

number to each arriving packet, which is calculated from the last sequence

number multiplied by an inverse weight (based on the ToS field). In other

words a higher ToS value results in a lower sequence number, and the

higher-priority packet will be serviced first.

WFQ is actually the default on slow serial links (2.048 Mbps or slower).

To explicitly enable WFQ on an interface:

Router(config)# interface s0/0

Router(config-if)# fair-queue

The following are optional WFQ parameters:

Router(config)# interface s0/0

Router(config-if)# fair-queue 128 1024

The 128 value increases the maximum size of a queue, measured in packets

(64 is the default). The 1024 value increases the maximum number of

queues from its default of 256.

The following queuing methods are based on WFQ:

• Class-Based Weighted Fair Queuing (CBWFQ)

• Low Latency Queuing (LLQ)

QoS and Queuing v1.31 – Aaron Balchunas

* * *

All original material copyright © 2010 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

7

Class-Based WFQ (CBWFQ)

WFQ suffers from several key disadvantages:

• Traffic cannot be queued based on user-defined classes.

• WFQ cannot provide specific bandwidth guarantees to a traffic flow.

• WFQ is only supported on slower links (2.048 Mbps or less).

These limitations were corrected with Class-Based WFQ (CBWFQ).

CBWFQ provides up to 64 user-defined queues. Traffic within each queue is

processed using FIFO. Each queue is provided with a configurable minimum

bandwidth guarantee, which can be represented one of three ways:

• As a fixed amount (using the bandwidth command).

• As a percentage of the total interface bandwidth (using the bandwidth

percent command).

• As a percentage of the remaining unallocated bandwidth (using the

bandwidth remaining percent command).

Note: the above three commands must be used exclusively from each other –

it is no possible to use the fixed bandwidth command on one class, and

bandwidth percent command on another class within the same policy.

CBWFQ queues are only held to their minimum bandwidth guarantee during

periods of congestion, and can thus exceed this minimum when the

bandwidth is available.

By default, only 75% of an interface’s total bandwidth can be reserved. This

can be changed using the following command:

Router(config)# interface s0/0

Router(config-if)# max-reserved-bandwidth 90

The key disadvantage with CBWFQ is that no mechanism exists to provide a

strict-priority queue for real-time traffic, such as VoIP, to alleviate latency.

Low Latency Queuing (LLQ) addresses this disadvantage, and will be

discussed in detail shortly.

QoS and Queuing v1.31 – Aaron Balchunas

* * *

All original material copyright © 2010 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

8

Configuring CBWFQ

CBWFQ is implemented using the Modular Command-Line (MQC)

interface. Specifically, a class-map is used to identify the traffic, a policy-

map is used to enforce each queue’s bandwidth, and a service-policy is used

to apply the policy-map to an interface.

Router(config)# access-list 101 permit tcp 10.1.5.0 0.0.0.255 any eq http

Router(config)# access-list 102 permit tcp 10.1.5.0 0.0.0.255 any eq ftp

Router(config)# class-map HTTP

Router(config-cmap)# match access-group 101

Router(config)# class-map FTP

Router(config-cmap)# match access-group 102

Router(config)# policy-map THEPOLICY

Router(config-pmap)# class HTTP

Router(config-pmap-c)# bandwidth 256

Router(config-pmap)# class FTP

Router(config-pmap-c)# bandwidth 128

Router(config)# interface serial0/0

Router(config-if)# service-policy output THEPOLICY

The above example utilizes the bandwidth command to assign a fixed

minimum bandwidth guarantee for each class. Alternatively, a percentage of

the interface bandwidth (75% of the total bandwidth, by default) can be

guaranteed using the bandwidth percent command:

Router(config)# policy-map THEPOLICY

Router(config-pmap)# class HTTP

Router(config-pmap-c)# bandwidth percent 40

Router(config-pmap)# class FTP

Router(config-pmap-c)# bandwidth percent 20

The minimum guarantee can also be based as a percentage of the remaining

unallocated bandwidth, using the bandwidth remaining percent command.

Router(config)# policy-map THEPOLICY

Router(config-pmap)# class HTTP

Router(config-pmap-c)# bandwidth remaining percent 20

Router(config-pmap)# class FTP

Router(config-pmap-c)# bandwidth remaining percent 20

Remember, the bandwidth, bandwidth percent, and bandwidth remaining

percent commands must be used exclusively, not in tandem, with each other.

QoS and Queuing v1.31 – Aaron Balchunas

* * *

All original material copyright © 2010 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

9

Low Latency Queuing (LLQ)

Low-Latency Queuing (LLQ) is an improved version of CBWFQ that

includes one or more strict-priority queues, to alleviate latency issues for

real-time applications. Strict-priority queues are always serviced before

standard class-based queues.

The key difference between LLQ and PQ (which also has a strict priority

queue), is that the LLQ strict-priority queue will not starve all other queues.

The LLQ strict-priority queue is policed, either by bandwidth or a

percentage of the bandwidth.

As with CBWFQ, configuration of LLQ is accomplished using MQC:

Router(config)# access-list 101 permit tcp 10.1.5.0 0.0.0.255 any eq http

Router(config)# access-list 102 permit tcp 10.1.5.0 0.0.0.255 any eq ftp

Router(config)# access-list 103 permit tcp 10.1.5.0 0.0.0.255 any eq 666

Router(config)# class-map HTTP

Router(config-cmap)# match access-group 101

Router(config)# class-map FTP

Router(config-cmap)# match access-group 102

Router(config)# class-map SECRETAPP

Router(config-cmap)# match access-group 103

Router(config)# policy-map THEPOLICY

Router(config-pmap)# class HTTP

Router(config-pmap-c)# bandwidth percent 20

Router(config-pmap)# class FTP

Router(config-pmap-c)# bandwidth percent 20

Router(config-pmap)# class SECRETAPP

Router(config-pmap-c)# priority percent 50

Router(config)# int serial0/1

Router(config-if)# service-policy output THEPOLICY

Note that the SECRETAPP has been assigned to a strict-priority queue, using

the priority percent command.

(Reference: http://www.cisco.com/en/US/docs/ios/12_0t/12_0t7/feature/guide/pqcbwfq.html)

QoS and Queuing v1.31 – Aaron Balchunas

* * *

All original material copyright © 2010 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

10

Troubleshooting Queuing

To view the configured queuing mechanism and traffic statistics on an

interface:

Router# show interface serial 0/0

Serial 0/0 is up, line protocol is up

 Hardware is MCI Serial

 Internet address is 192.168.150.1, subnet mask is 255.255.255.0

 MTU 1500 bytes, BW 1544Kbit, DLY 20000 usec, rely 255/255, load 1/255

 Encapsulation HDLC, loopback not set

 ARP type: ARPA, ARP Timeout 04:00:00

 Last input 00:00:00, output 00:00:01, output hang never

 Last clearing of "show interface" counters never

 Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0

 Queueing strategy: Class-based queueing

 Output queue: 0/1000/64/0 (size/max total/threshold/drops)

 Conversations 0/1/256 (active/max active/max total)

 Reserved Conversations 1/1 (allocated/max allocated)

To view the packets currently stored in a queue:

Router# show queue s0/0

To view policy-map statistics on an interface:

Router# show policy-map interface s0/0

Serial0/0

 Service-policy input: THEPOLICY

 Class-map: SECRETAPP (match-all)

 123 packets, 44125 bytes

 1 minute offered rate 1544000 bps, drop rate 0 bps

 Match: access-group 103

 Weighted Fair Queuing

 Strict Priority

 Output Queue: Conversation 264

 Bandwidth 772 (Kbps)

 (pkts matched/bytes matched) 123/44125

