- Point-to-Point Protocol -

WAN Encapsulation

Recall that WAN technologies operate at both Physical and Data-link layers of the OSI models, and that higher-layer protocols such as IP are encapsulated when sent across the WAN link.

A WAN is usually terminated on a Cisco device’s serial interface. Serial interfaces support a wide variety of **WAN encapsulation types**, which must be manually specified.

By default, a serial interface will utilize **HDLC** for encapsulation. Other supported encapsulation types include:

- SDLC
- PPP
- LAPB
- Frame-Relay
- X.25
- ATM

Regardless of the WAN encapsulation used, it must identical on both sides of a point-to-point link.

HDLC Encapsulation

High-Level Data-link Control (HDLC) is a WAN encapsulation protocol used on dedicated point-to-point serial lines.

Though HDLC is technically an ISO standard protocol, Cisco’s implementation of HDLC is proprietary, and will not work with other routers.

HDLC is also Cisco’s **default encapsulation** type for serial point-to-point links. HDLC provides *no* authentication mechanism.
PPP Encapsulation

Point-to-Point Protocol (PPP) is a standardized WAN encapsulation protocol that can be used on a wide variety of WAN technologies, including:

- Dedicated point-to-point serial lines
- Asynchronous dial-up links
- ISDN

PPP has four components:

- **Physical** – standard for physical serial communication (such as EIA/TIA-232-C, V.35, ISDN, etc.).
- **HDLC** – for encapsulating packets into frames over serial lines.
- **LCP** – for establishing, maintaining, and terminating point-to-point links.
- **NCP** – allows multiple Layer-3 protocols (such as IP and IPX) to be encapsulated into frames.

PPP supports several features that standalone HDLC does not:

- **Authentication** – secures the communication by forcing the sending/receiving devices to identify themselves with a username and password. PPP supports two forms of authentication – **PAP** and **CHAP**.

- **Compression** – improves efficiency on slow links. PPP supports two forms of compression: **Stac** and **Predictor**.

- **Multilink** – allows multiple channels to be *bundled* or *trunked* together to combine the bandwidth. The bundled channels are treated as one logical channel.

- **Callback** – provides security and billing services. Allows a client to first **dial** a PPP server, **disconnect**, and then have the PPP server **call** the client **back**.

- **Error Control**
Configuring Basic PPP

To configure a serial interface for PPP encapsulation:

```
Router(config)# int s0/0
Router(config-if)# encapsulation ppp
```

Recall that PPP supports two methods of authentication, PAP and CHAP. PAP (Password Authentication Protocol) sends passwords in clear text, and thus does not provide much security. CHAP (Challenge Handshake Authentication Protocol) uses MD5 to apply an irreversible hash.

To configure PPP authentication:

```
Router(config)# hostname Router1
Router(config)# username Router2 password PASSWORD
Router(config)# int s0/0
Router(config-if)# ppp authentication chap
```

The first line sets the hostname of the router. The second line sets the username and password used for PPP authentication. The username must be the hostname of the remote router, and the password must be the same on both routers.

The above configuration sets the authentication to chap. To instead configure pap authentication:

```
Router(config)# int s0/0
Router(config-if)# ppp authentication pap
```

To view the encapsulation configured on the interface:

```
Router# show interface s0/0
```

To troubleshoot PPP authentication between two routers:

```
Router# debug ppp authentication
```

More advanced PPP configuration is discussed in the ISDN guide.